

 Faculty of Sciences

Université Ibn Tofail

Faculty of Sciences, Kenitra

 Master’s Final Year Project Report

Master in Artificial Intelligence and Virtual Reality

Development of a Customer Service

Chatbot for a Smart Home Rental

Business

Host Company: S O J O R I H O L D I N G - C a s a b l a n c a

Prepared by: Mr. Mouad MIFTAH IDRISSI

Supervised by: Mr. Anass NOURI (FSK-UIT)

 Mr. Tawfiq GOUACH (SOJORI Holding)

Presented on September 20, 20 24, before the jury composed of :

- Mr Anass NOURI (FSK-UIT)

- Mr Tarik BOUJIHA (ENSAK-UIT)

- Mr Rochdi MESSOUSSI (FSK-UIT)

- Mme Raja TOUAHNI (FSK-UIT)

__

Academic year 2023/2024

`

Acknowledgements

I would like to begin by expressing my deepest gratitude to Allah for providing me with the strength,

perseverance, and guidance throughout this journey.

I also extend my sincere gratitude to the SOJORI Holding team for providing me with the opportunity

to complete my End of Studies internship with their esteemed company.

My heartfelt thanks go to my supervisors, Mr. Anass Nouri and Mr. Tawfiq Gouach, whose guidance

and support were invaluable throughout the entire process.

I wish to thank the professors and staff of the Master's program in Artificial Intelligence and Virtual

Reality at the Faculty of Sciences - Ibn Tofail University for their continuous encouragement and for

equipping me with the knowledge and training necessary to succeed in this project.

I am deeply thankful to my parents, whose unwavering support, love, and encouragement have been a

constant source of strength.

Lastly, I extend my appreciation to my colleagues, friends, and family for their ongoing support and

motivation.

`

Abstract

This project was conducted as part of my End of Studies internship for the Master’s degree in Artificial

Intelligence and Virtual Reality at the Faculty of Sciences - Ibn Tofail University. The goal of this

project was to enhance the customer experience in smart home rental services by integrating artificial

intelligence solutions. Hosted by SOJORI Holding, the project involved developing a multi-platform

chatbot system, integrated with modern tools such as FastAPI, OpenAI models, and LangChain to

handle customer queries more effectively. The chatbot automates essential processes such as online

check-in, property access, and communication with tenants through WhatsApp and the company’s

website. The project aimed to improve efficiency, customer satisfaction, and scalability by employing

state-of-the-art technologies like Retrieval-Augmented Generation (RAG) and LangGraph for data

retrieval and response generation.

__

Keywords: Smart home rental, Customer service automation, AI chatbot, WhatsApp API, OpenAI,

LangChain, RAG, LLMs, LangGraph.

__

`

Résumé

Ce projet a été réalisé dans le cadre de mon stage de fin d'études pour le Master en Intelligence

Artificielle et Réalité Virtuelle à la Faculté des Sciences - Université Ibn Tofail. L'objectif de ce projet

était d'améliorer l'expérience client dans le domaine de la location de maisons intelligentes en intégrant

des solutions basées sur l'intelligence artificielle. Hébergé par SOJORI Holding, le projet a consisté à

développer un système de chatbot multi-plateforme, intégré avec des outils modernes tels que FastAPI,

les modèles d'OpenAI et LangChain, afin de traiter les demandes des clients de manière plus efficace.

Le chatbot automatise des processus essentiels tels que l'enregistrement en ligne, l'accès aux propriétés,

et la communication avec les locataires via WhatsApp et le site web de l'entreprise. Le projet visait à

améliorer l'efficacité, la satisfaction client et l'évolutivité en employant des technologies de pointe

comme la Génération Augmentée par la Récupération (RAG) et LangGraph pour la récupération de

données et la génération de réponses.

__

Mots-clés : Location de maisons intelligentes, Automatisation du service client, Chatbot IA, API

WhatsApp, OpenAI, LangChain, RAG, LLMs, LangGraph.

__

`

List of Abbreviations

AI Artificial Intelligence

NLP Natural Language Processing

ICT Information and Communication Technology

IoT Internet of Things

LLM Large Language Model

RAG Retrieval-Augmented Generation

API Application Programming Interface

GPT Generative Pre-trained Transformer

AWS Amazon Web Services

PMS Property Management System

VS Code Visual Studio Code

DB Database

ML Machine Learning

JSON JavaScript Object Notation

CRM Customer Relationship Management

`

Table of Contents

Acknowledgements ... 2

Abstract ... 3

Résumé .. 4

List of Abbreviations .. 5

Table of Contents .. 6

List of Figures ... 9

List of Tables .. 11

General Introduction ... 1

Chapter I: General context .. 2

I.1 Company presentation... 2

I.1.1 SOJORI HOLDING Company ... 2

I.1.2 Core Services .. 2

I.1.3 Structure and Teams.. 3

I.2 Project Presentation .. 3

I.2.1 Context and motivation ... 3

I.2.2 Problem Statement .. 4

I.2.3 Objectives ... 4

I.3 Project management tools ... 5

I.3.1 ClickUp ... 5

I.3.2 Slack .. 6

Chapter II: Fundamental Concepts ... 7

II.1 Natural Language Processing (NLP) .. 7

II.1.1 Key Techniques in NLP .. 7

II.1.2 Word Embeddings: ... 8

II.2 Generative artificial intelligence ... 10

II.2.1 The Evolution of Generative artificial intelligence: .. 11

II.2.2 Types of Generative AI: .. 12

II.2.3 Applications of Generative AI: ... 12

II.3 Large Language Models (LLMs): ... 13

II.3.1 How LLMs Work: ... 13

II.3.2 Training and Fine-Tuning of LLMs .. 14

II.3.3 Examples of Powerful LLMs: ... 14

II.3.4 Applications of Large Language Models .. 16

II.4 Prompt Engineering .. 16

`

II.4.1 Key Uses of Prompt Engineering: .. 16

II.4.2 Techniques for Effective Prompt Engineering: ... 17

II.5 Retrieval-Augmented Generation (RAG) ... 17

II.5.1 Key Components of RAG: .. 17

II.6 Chatbots .. 18

II.6.1 Evolution of chatbots .. 18

II.6.2 Types of Chatbots ... 19

II.6.3 Benefits of Chatbots .. 20

II.6.4 Traditional Chatbot Vs Conversational AI ... 20

Chapter III: Tools and Technologies .. 21

III.1 Development Tools and Environments ... 21

III.1.1 Python ... 21

III.1.2 Visual studio Code .. 21

III.1.3 GitHub ... 22

III.1.4 Next.js ... 22

III.2 Backend Frameworks and Libraries ... 22

III.2.1 FastAPI ... 22

III.2.2 LangChain and LangGraph ... 22

III.2.3 Docker ... 24

III.3 Databases and Storage .. 24

III.3.1 MongoDB database ... 24

III.3.2 Amazon Web Service .. 25

III.3.3 Redis ... 25

III.4 APIs and Integrations .. 26

III.4.1 OpenAI APIs ... 26

III.4.2 Meta Cloud API .. 28

III.4.3 Hostaway ... 30

Chapter IV: System design and implementation ... 32

IV.1 Database Preparation... 32

IV.1.1 HostAway API Integration .. 32

IV.1.2 Custom Database Design and Field Analysis ... 33

IV.2 Exploring existing solutions.. 34

IV.2.1 Evaluating Chatbot Building Platforms .. 34

IV.2.2 Evaluating Pre-Built Chatbots: HostAI ... 35

IV.2.3 Implementation of OpenAI Assistants API ... 35

IV.3 Building the Initial RAG System .. 36

IV.3.1 Database Preparation for RAG.. 36

`

IV.3.2 Query Processing and Workflow .. 37

IV.3.3 Response Generation with LLM ... 38

IV.3.4 Role of LangChain in RAG: ... 40

IV.3.5 Challenges and Limitations ... 40

IV.4 Transition to Advanced RAG System ... 41

IV.4.1 Development of Graph-Based RAG System ... 41

IV.4.2 Multi-Channel integration ... 43

IV.5 Dashboard Chat and Session handling .. 52

IV.5.1 State Handling ... 52

IV.5.2 Storing chat History .. 52

IV.5.3 Dashboard Visualization ... 53

General Conclusion and Perspectives ... 54

References ... 55

`

List of Figures

Figure 1 Sojori holding's logo ... 2

Figure 2 ClickUp logo .. 5

Figure 3 Screenshot of ClickUp tasks ... 5

Figure 4 Slack logo ... 6

Figure 5 Applications of Natural Language Processing ... 7

Figure 6 Vector Space Representation of Gender Relations in Word Embeddings 8

Figure 7 Embeddings Across Data Types ... 9

Figure 8 Query Processing in a Vector Database.. 9

Figure 9 Interconnections Between Generative AI and Other AI Subfield. ... 10

Figure 10 The Evolution of Generative AI ... 11

Figure 11 Types of Generative AI .. 12

Figure 12 Generative AI Use Cases .. 12

Figure 13 Interconnections Between Generative AI and Large Language Models 13

Figure 14 Generative AI Vs Large Language Models .. 13

Figure 15 Token Prediction Process in a Large Language Model .. 14

Figure 16 Example components of Prompt Engineering for Language Model Input and Output 17

Figure 17 Workflow of a Retrieval-Augmented Generation (RAG) System.. 18

Figure 18 History of chatbots.. 18

Figure 19 Difference between Conversational AI and Traditional chatbots ... 20

Figure 20 Python logo ... 21

Figure 21 VS Code Logo .. 21

Figure 22 Github Logo .. 22

Figure 23 MongoDB Data Model and Document Structure ... 24

Figure 24 Redis Data Types and Key-Value Storage Model .. 25

Figure 25 OpenAI Assistant API playground interface .. 27

Figure 26 Example of WhatsApp Templates for Customer Notifications .. 28

Figure 27 Example of FLOW JSON and its result ... 29

Figure 28 Example of WhatsApp Flows for Booking and Customer Engagement 30

Figure 29 Hostawat logo ... 30

Figure 30 Overview of Hostaway's Dashboard ... 31

Figure 31 Example of Hostaway API Listing Fields .. 32

Figure 32 Preparation of Reservation Fields for Database Integration ... 33

Figure 33 Custom Guest Behavior Fields for Enhanced Data Analysis ... 34

Figure 34 Summary Structure for Listings ... 36

`

Figure 35 Summary Structure for Reservations .. 37

Figure 36 Summary Structure for Calendar Entries .. 37

Figure 37 Query Processing Workflow in RAG System .. 38

Figure 38 Prompt structure for llm in the initial rag system ... 38

Figure 39 Workflow of the initial Retrieval-Augmented Generation (RAG) System 40

Figure 40 Langgraph system design ... 41

Figure 41 Example of Handling a General Query Without Reservation .. 43

Figure 42 Workflow for RAG-Based Inquiry Handling ... 44

Figure 43 Example of the chatbot system handeling question requires reservation 45

Figure 44 Response Workflow for Static Information Categories .. 45

Figure 45 Example of Room Service Inquiry Handling ... 47

Figure 46 Example of a WhatsApp Flow JSON for Language Selection ... 47

Figure 47 Example of Language determination Results Based on User's Phone Number 48

Figure 48 Language Change Workflow in WhatsApp Backend ... 48

Figure 49 Example of Language Change Workflow in WhatsApp Chatbot Interface 49

Figure 50 Workflow for Handling Requests via WhatsApp Flows .. 49

Figure 51 WhatsApp Interface for Selecting Check-in, Checkout, and Cleaning Options 50

Figure 52 Workflow for Online Check-in Process Using WhatsApp Flow and OpenAI 50

Figure 53 Guest and registraction document selection flow ... 51

Figure 54 Example of online check-in form ... 51

Figure 55 Example of a user’s chat history stored in MongoDB .. 53

Figure 56 Real-time Chat Visualization and User Interaction Dashboard .. 53

file:///C:/Users/Asus/Desktop/AIRV/PFE/A_RAPPORT/finale/Version%20Final%20PFE111.docx%23_Toc177159334

`

List of Tables

Table 1 Key Techniques in Natural Language Processing ... 8

Table 2 Comparison of existing LLMs ... 15

Table 3 Different Benefits of Chatbots ... 20

Table 4 Existing Chatbot Building Platforms ... 34

Table 5 Comparison of AI Models ... 39

`

Academic year 2023/2024 1

General Introduction

In the evolving landscape of digital interactions, businesses are increasingly adopting AI-driven

solutions to streamline customer service and enhance operational efficiency. The property management

sector, particularly, has seen a rising need for systems capable of managing guest inquiries, reservations,

and property access seamlessly. Sojori Holding embarked on a project to develop a chatbot system

tailored to automate responses to common inquiries and manage more complex tasks with minimal

human intervention.

The project aims to create a personalized, dynamic chatbot that aligns with Sojori Holding's identity

and is capable of handling a diverse range of customer inquiries across platforms such as WhatsApp

and the company’s website. By automating tasks like booking updates, property information requests,

and guest verification, the system provides a seamless customer experience. It is designed to integrate

smoothly with Sojori’s existing infrastructure, ensuring high-quality service across multiple channels.

In addition to providing accurate and context-aware responses, the chatbot system is scalable, enabling

future customization and potential expansion into other areas of business. The project not only focuses

on enhancing customer service but also on optimizing operational workflows through AI-based

automation, ensuring the system reflects Sojori's unique operational needs and brand identity.

This report is organized into the following structure:

1. General Introduction provides an overview of the project, introducing the hosting company,

Sojori Holding, and the motivation behind the chatbot system's development. It outlines the key

challenges in automating customer service, particularly in the smart home rental sector, and the

objectives the project seeks to achieve.

2. Fundamental Concepts explains the theoretical and technical concepts that underpin the

project, covering key areas such as Natural Language Processing (NLP), Generative AI, Large

Language Models (LLMs), Retrieval-Augmented Generation (RAG), and prompt engineering.

3. Tools and Technologies presents the development tools, libraries, and frameworks used

throughout the project. It discusses the programming environments, backend frameworks (such

as FastAPI, LangChain, and LangGraph), and the databases (MongoDB) that form the

backbone of the chatbot system.

4. System Design and Implementation delves into the methodology and practical

implementation of the chatbot. This chapter covers the workflow of integrating AI and RAG

systems, as well as the multichannel communication setup (WhatsApp and web) used to deliver

personalized customer interactions.

`

Academic year 2023/2024 2

 Chapter I: General context

This chapter gives an overview of the project, starting off with a presentation of the host organization,

SOJORI HOLDING, and how it’s seeking to improve tenants’ experience in the home rental scene. It

continues to then introduce the project by diving into the context and motivation behind it. The chapter

then details the objectives and provides an outline of the planning and management strategies that

guided its development.

I.1 Company presentation

I.1.1 SOJORI HOLDING Company

Figure 1 Sojori holding's logo

SOJORI HOLDING is an emerging startup specializing in the smart home rental industry. The

company was founded to meet the growing demand for a seamless and efficient rental experience by

transforming conventional homes into fully automated smart houses through advanced ICT

(Information and Communication Technology) solutions.

SOJORI's primary mission is to enhance the rental experience, especially for families and larger groups,

by combining the comfort of traditional rentals with the convenience typically found in hotels. They

aim to automate the entire rental process—ranging from booking and check-in to property

management—through AI and IoT technologies. Their vision is to revolutionize the Moroccan rental

market by providing the luxury of a hotel experience while maintaining the privacy and flexibility of a

private home.

I.1.2 Core Services

SOJORI’s core offerings focus on smart home rentals and the development of advanced management

systems for its own properties. By integrating technologies such as keyless entry, voice-activated

controls, automated customer support, and energy-efficient systems, SOJORI aims to streamline the

rental process for its customers. In addition to providing an enhanced renter experience, SOJORI is

working to create management tools that allow its team to oversee and manage all aspects of their

properties, from energy consumption to customer interactions, in a seamless and efficient manner.

`

Academic year 2023/2024 3

I.1.3 Structure and Teams

As an upcoming startup, SOJORI operates with a streamlined organizational structure, focusing on the

following key teams:

 AI Team: Responsible for integrating artificial intelligence into customer interactions and

property management.

 Back-End Development: Manages the infrastructure and databases that support the smart

home systems.

 Front-End Development: Focuses on designing and maintaining user interfaces across

SOJORI’s web and mobile applications.

 Rental Services: This team handles property management, customer service, and the logistical

aspects of rental operations, including the management of IoT devices for smart homes.

I.2 Project Presentation

I.2.1 Context and motivation

Artificial Intelligence (AI) is increasingly being adopted into various fields, transforming the way

healthcare, finance, manufacturing, and many other industries operate. This is because of its ability to

analyze large amounts of data, recognize patterns, and make well-informed decisions. In customer

service, for instance, AI increases efficiency by automating repetitive tasks and providing fast, accurate

responses, improving user experience and satisfaction. This makes AI an essential tool for companies

aiming to offer seamless customer support.

Simultaneously, the concept of smart homes has evolved significantly with the development of the

Internet of Things (IoT). Smart home technology initially aimed at providing convenience, security,

and energy efficiency through automation and remote control. Over time, it has evolved into more

integrated systems that adapt to user needs, improving daily life. Today, smart homes use

interconnected devices—such as thermostats, lighting, and security cameras—to create a unified and

responsive living environment.

As smart homes become more common, tenants now expect the same level of sophistication and

responsiveness to extend beyond the physical home and improve the entire rental process. As the

expectations continued to grow, it became clear that integrating AI into the rental process was the next

step. AI can automate administrative tasks, provide personalized recommendations for tenants, and

facilitate communication between tenants and property managers. This creates a more cohesive and

efficient rental experience, providing a more seamless and satisfying experience for all parties involved.

`

Academic year 2023/2024 4

I.2.2 Problem Statement

As the smart home rental business continues to grow, the increasing expectations of tenants are

becoming more apparent. They are expecting to be exposed to not only new and enhanced in-home

automation solutions but also dynamic interaction with property management systems. This involves

effortlessly managing inquiries, service requests, and other essential tasks, all customized to meet their

specific needs and preferences.

However, what is offered as automated customer care services in the industry frequently falls short.

These systems often result in a one-size-fits-all approach that is incohesive and lacks the flexibility

needed to address the different requirements of tenants and properties. Additionally, there is a noticeable

lack in the ability of these systems to integrate various processes and manage interactions across

multiple platforms.

Moreover, the absence of context-aware support often leads to tenants facing difficulties when trying

to communicate their specific needs or seeking assistance during their stay. This can shake the

confidence in the service provided and can taint the overall experience of living in a smart home rental.

The challenge is not just about integrating technology but also about creating a cohesive and responsive

support system that aligns with the high standards of smart home living.

These issues highlight the pressing need to rethink how customer service is provided in the smart home

rental space to better meet the evolving expectations of tenants.

I.2.3 Objectives

To address the specific challenges in the smart home rental industry and meet the evolving expectations

of modern tenants, this project focuses on developing a comprehensive AI-powered solution by tackling

specific objectives that aim to enhance the overall tenant experience. The primary objectives of the

project are:

 Develop a unified, multilingual chatbot system: Create a multilingual AI-powered chatbot

that operates across multiple platforms, including the website and WhatsApp, allowing tenants

to engage with property management in their desired language and preferred communication

channel, maintaining consistent and personalized communication and support for a diverse

tenant base.

 Automate essential tenant processes and requests: Implement automation for key tenant

processes such as online check-in, service requests (including room service), access

management, and in-home automation tasks. That way, the tenants can also address their needs

effectively through the chat-bot.

`

Academic year 2023/2024 5

 Enhance personalization and context-aware responses: Integrate advanced AI techniques to

ensure that the chatbot delivers unique, context-aware responses to each tenant based on their

individual profile and needs.

 Customize the chatbot to meet the company's needs and provide 24/7 service: Tailor the

AI-powered chatbot to align with the company’s branding, operational procedures, and specific

tenant services. Additionally, equip the chatbot with the ability to provide continuous, 24/7

customer support and monitoring capabilities, allowing managers to store and review all

interactions to analyze tenant behavior and feedback, ensuring a high level of service quality

and consistency.

I.3 Project management tools

I.3.1 ClickUp

Figure 2 ClickUp logo

During the development process, we relied on ClickUp as our main project management tool, enabling

efficient task tracking, setting deadlines, assigning responsibilities, and real-time progress monitoring.

Its intuitive interface helped the team stay focused on project goals, while its flexible features made it

simple to adapt to the dynamic needs, whether dealing with straightforward to-do lists or managing

more complex project timelines.

Figure 3 Screenshot of ClickUp tasks

`

Academic year 2023/2024 6

I.3.2 Slack

Figure 4 Slack logo

We relied on Slack for seamless communication and real-time collaboration throughout the project.

Slack enabled our team to exchange messages, share files, and engage in discussions related to project

tasks and progress. By utilizing various channels within Slack, we were able to keep conversations

organized and focused on specific topics. The platform's integration with other tools, including ClickUp,

further improved our workflow, allowing us to stay connected and productive.

`

Academic year 2023/2024 7

Chapter II: Fundamental Concepts

This chapter delves into the foundational concepts relevant to the project. It provides an overview of

state-of-the-art advancements in generative AI, large language models (LLMs), embeddings, and

chatbots. By exploring these areas, the chapter aims to establish an understanding of the methodologies

that are integral to the project's development and implementation. It also highlights the evolution and

current applications of these technologies, setting the stage for their practical use in the project.

II.1 Natural Language Processing (NLP)

Natural language processing (NLP) is a machine learning technology that allows computers to interpret,

manipulate, and comprehend human language. It combines linguistics, computer science, and machine

learning to efficiently process and analyze a large amount of natural language data. This technology is

essential for a variety of applications, such as sentiment analysis, translation services, chatbots, and

more.

Figure 5 Applications of Natural Language Processing

II.1.1 Key Techniques in NLP

NLP uses several key techniques to convert raw text data into meaningful information that machines

can process. These techniques include:

Sentence Segmentation This is the first step in many NLP tasks and involves the division of text into

separate sentences, enabling further analysis at the sentence level.

Word Tokenization Breaking down text into individual words or tokens. This step simplifies

language data processing by working with smaller, more manageable pieces.

`

Academic year 2023/2024 8

Stemming The process of reducing words to their base or root form. For example, the

word "running" becomes "run." This helps combine different word forms into

a single entity, which is useful for text analysis.

Lemmatization Similar to stemming, but it reduces words to their dictionary form. It would

lower "better" to "good." Lemmatization includes context and morphology,

making it more accurate than stemming.

Stop Word Analysis Removing frequent words like "and," "the," and "is" that provide less meaning

in the analysis. This helps in focusing on the more significant words in the text.

Dependency Parsing This approach helps understand the relationship between words in a sentence

by analyzing the grammatical structure and word interdependencies.

Part-of-Speech

Tagging

Assigning parts of speech (such as noun, verb, or adjective) to each word in a

sentence. Grammatical knowledge aids parsing and sentiment analysis.

Table 1 Key Techniques in Natural Language Processing

II.1.2 Word Embeddings:

Word embeddings are a core component of natural language processing (NLP) and machine learning

that transform textual data into numerical form. Unlike traditional one-hot encoding, which represents

words as binary vectors in a sparse vector space, word embeddings use dense vector representations.

Training models on large text corpora generates these embeddings, aiding in their understanding of the

semantic meanings and relationships between words.

Figure 6 Vector Space Representation of Gender Relations in Word Embeddings

The key idea behind word embeddings is to represent words within a continuous vector space,

positioning semantically similar words near each other. For example, in this vector space, the words

"king" and "queen" may be close because they share similar contexts, while "king" and "apple" would

be distant due to their unrelated contexts. This spatial representation effectively captures linguistic

relationships such as synonyms, antonyms, and analogies. This can be seen in the vector difference

between "king" and "queen," which parallels the difference between "man" and "woman."

`

Academic year 2023/2024 9

II.1.2.1 Vector Embeddings:

Vector embeddings extend the concept of word embeddings to various data types, such as images,

audio, and documents. In a multi-dimensional space, each vector represents a data point's key features,

allowing for analysis and similarity searches across different data types.

The process of creating vector embeddings involves an embedding model that transforms raw data into

fixed-size vectors. These vectors preserve data attributes and relationships as compact numerical

representations. For instance, image vectors can capture visual characteristics, while audio vectors can

represent sound patterns.

Figure 7 Embeddings Across Data Types

II.1.2.2 Vector Databases:

Vector databases are specialized systems designed to effectively manage the storing, indexing, and

searching of vector embeddings. Vector databases, unlike traditional databases that manage structured

data using rows and columns, optimize to handle the unique challenges of vector data, including

handling large dimensionality and performing fast similarity searches.

Figure 8 Query Processing in a Vector Database

In a vector database, data points are represented as vectors within a multi-dimensional space. When a

query is made, the database employs similarity metrics, such as cosine similarity, Euclidean distance,

or Manhattan distance, to measure the proximity between the query vector and the stored vectors.

`

Academic year 2023/2024 10

This method identifies the vectors that are closest to the query, effectively retrieving the most similar

items from the database.

For example, in an image search application, a user might input a photo, which the system converts into

a vector. The system then retrieves visually similar images by comparing the vector of the input photo

with the vectors stored in the database, enhancing the user experience in digital asset management and

multimedia search.

II.1.2.3 Applications of Vector Embeddings and Vector Databases:

 Content-Based Recommendation Systems: These systems can recommend items that are

similar to those a user has previously interacted with. A movie recommendation system, for

example, might embed movies as vectors based on their features, then recommend similar

movies based on their proximity in vector space.

 Image and audio retrieval: Vector embeddings enable efficient indexing and searching of

multimedia content. The system transforms a user's uploaded picture or audio sample into a

vector and then retrieves relevant items from the database, enhancing digital asset management

and searching capabilities.

 Anomaly Detection: By embedding data points as vectors, security and fraud detection

systems can identify outliers or abnormalities that deviate from regular patterns, enabling the

detection of fraud or security breaches.

II.2 Generative artificial intelligence

Generative AI is a subset of artificial intelligence focused on creating new content by learning from

existing data. Generative AI models aim to generate new outputs like text, images, audio, video,

animations, and 3D models. These models leverage complex algorithms and neural networks to learn

the underlying structure and statistical distribution of the training data. As a result, they can generate

new content that aligns with learned patterns while being original.

Figure 9 Interconnections Between Generative AI and Other AI Subfield.

`

Academic year 2023/2024 11

II.2.1 The Evolution of Generative artificial intelligence:

Figure 10 The Evolution of Generative AI

The development of Generative AI has witnessed significant advancements over the past decade, driven

by notable innovations in artificial intelligence. The timeline above captures key developments in

generative AI models:

 2013: Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) were

introduced. VAEs allow generative models to learn latent space representations, and GANs use

adversarial training to make synthetic data that looks like real data.

 2017: Breakthrough with Transformers, which revolutionized natural language processing by

introducing the attention mechanism, laying the groundwork for advanced generative models

like BERT, GPT, and T5.

 2018-2019: Development of GPT models that enhanced language generation through

unsupervised learning and T5 that unified NLP tasks into a text-to-text format, improving task

performance.

 2020: Introduction of GPT-3, With 175 billion parameters, GPT-3 became the largest and most

powerful language model at the time of its release. It could generate human-like text across

various prompts and exhibited capabilities in tasks like translation, summarization, and even

basic reasoning, making it a versatile tool for numerous applications.

 2021: Google DeepMind developed an advanced language model, exploring scaling laws for

language models and introducing GPT-J as an open-source alternative to GPT-3, thereby

promoting research accessibility.

 2022: Models like Chinchilla were released with a focus on training efficiency. LaMDA and

PaLM improved conversational AI. Both Dall-E 2 and Imagen improved text-to-image

`

Academic year 2023/2024 12

synthesis. Also, open-source models like OPT, GPT-NeoX, and BLOOM encouraged inclusion

and multilingual abilities.

 2023: Release of GPT-4, with 1.8 trillion parameters, represents one of the most advanced

generative models to date, pushing the boundaries of text generation and demonstrating its

capabilities across diverse applications.

II.2.2 Types of Generative AI:

Based on the data they produce; we can classify generative AI into several categories:

- Language-Based Generative AI: Models that generate text-based content, such as essays,

stories, or code. Examples include GPT-3 and GPT-4.

- Visual Generative AI: Models that focus on creating visual content, such as images, videos,

and 3D models, often using GANs to generate highly realistic visuals.

- Auditory Generative AI: Models that generate audio content, such as music and speech.

- Synthetic Data Generation: Models that create artificial datasets to train other AI models.

Figure 11 Types of Generative AI

II.2.3 Applications of Generative AI:

Figure 12 Generative AI Use Cases

`

Academic year 2023/2024 13

II.3 Large Language Models (LLMs):

Figure 13 Interconnections Between Generative AI and Large Language Models

Generative AI and Large Language Models (LLMs) are key components of modern artificial

intelligence. Generative AI refers to a broad category of models that create new content across various

formats, such as text, images, and audio. LLMs, a subset of generative AI, specifically focus on

generating text-based outputs by leveraging large datasets and complex neural networks.

Figure 14 Generative AI Vs Large Language Models

II.3.1 How LLMs Work:

A fundamental component of LLMs is the transformer architecture, a neural network model that

processes input data in parallel rather than in a sequential manner. This architecture consists of an

encoder and a decoder:

 Encoder: This component reads the input text and creates a representation of the input data,

capturing its semantic meaning and the relationships between words and phrases.

 Decoder: The decoder takes the encoded input and generates output text, predicting the next

word or token based on the context provided by the input.

`

Academic year 2023/2024 14

Transformers use attention mechanisms to enhance their ability to handle context effectively. When

generating each word, attention mechanisms allow the model to focus on specific parts of the input,

which helps to understand context and generate more coherent and contextually relevant text.

Figure 15 Token Prediction Process in a Large Language Model

II.3.2 Training and Fine-Tuning of LLMs

Training an LLM involves feeding the model large amounts of text data to process it and learn the

statistical properties of language. The training data helps the model understand language, meaning, and

even world knowledge, enabling it to correctly predict the next word in a sequence.

LLMs are commonly trained using a self-supervised learning approach, where the model learns to

predict parts of the input data itself (e.g., the next word in a sentence) without requiring explicit labels.

This method allows LLMs to effectively acquire knowledge from unstructured data.

To fine-tune an LLM, there are several approaches:

 Zero-Shot Learning: Based on the prompt's provided context, the model can perform a task

without specific training.

 Few-Shot Learning: We provide the model with a few examples of a task to improve its

performance on that task.

 Fine-Tuning: To optimize the model's performance for specific applications, we further train

it on a smaller, task-specific dataset.

II.3.3 Examples of Powerful LLMs:

Model Provider Open-Source Speed Quality

GPT-4 OpenAI No ★☆☆ ★★★★

GPT-3.5-turbo OpenAI No ★★☆ ★★★☆

`

Academic year 2023/2024 15

GPT-3 OpenAI No ★☆☆ ★★★☆

Claude-instant Anthropic Yes ★★★ ★★☆☆

Claude Anthropic Yes ★★☆ ★★★☆

T5 Google Yes ★★☆ ★☆☆☆

BERT Google Yes ★★★ ★☆☆☆

command-xlarge Cohere No ★★☆ ★★☆☆

command-

medium

Cohere No ★★★ ★☆☆☆

ada, babbage,

curie

OpenAI No ★★★ ★☆☆☆

T5 Google Yes ★★☆ ★☆☆☆

PaLM Google Yes ★☆☆ ★★☆☆

LLaMA Meta AI Yes ★★☆ ★★☆☆

CTRL Salesforce Yes ★★★ ★☆☆☆

Dolly 2.0 Databricks Yes ★★☆ ★★☆☆

Table 2 Comparison of existing LLMs

Among the various LLMs, OpenAI's models, particularly GPT-3 and GPT-4, stand out as leaders in the

field. Their ability to generate high-quality and contextually relevant text has established them as the

industry standard for a wide range of applications.

The main characteristics of GPT models include:

 Transformer Architecture: GPTs are based on the transformer architecture, which enables

them to handle long sequences of text efficiently.

 Pre-training and Fine-tuning: GPT models undergo two main phases: pre-training and fine-

tuning. During pre-training, the model learns general language patterns from a massive dataset.

In the fine-tuning phase, the model is adjusted to perform specific tasks by training on a smaller,

task-specific dataset.

 Scalability: GPT models are known for their large scale, with GPT-3 having 175 billion

parameters, which allows GPTs to generate highly sophisticated and human-like text across a

wide range of applications, from writing to generating code and answering questions.

 Versatility: With their wide range of applications in natural language processing, GPTs are

incredibly versatile. They can handle tasks such as text completion, translation, summarization,

and even act as conversational agents like ChatGPT.

`

Academic year 2023/2024 16

II.3.4 Applications of Large Language Models

 Copywriting: LLMs can generate marketing content, articles, and other written materials,

saving time and resources for content creators.

 Knowledge Base Answering: LLMs can retrieve and generate responses based on vast

amounts of stored information, making them valuable for customer service and information

retrieval.

 Text Classification: LLMs can classify text based on sentiment, topic, or other criteria,

aiding in tasks like sentiment analysis and document categorization.

 Code Generation: LLMs are capable of generating code snippets in various programming

languages, assisting developers in automating repetitive coding tasks.

 Conversational AI: LLMs power chatbots and virtual assistants, enabling them to

understand user intent and provide relevant responses in natural language.

II.4 Prompt Engineering

Prompt engineering is a key technique for optimizing the use of generative AI models, particularly large

language models (LLMs). It involves Crafting and refining inputs is crucial in guiding the AI model to

generate specific and relevant outputs.

The effectiveness of these models heavily depends on the quality and precision of the prompts, ensuring

that AI understands the context and intent behind queries, which directly impact the accuracy and

relevance of the responses generated.

II.4.1 Key Uses of Prompt Engineering:

 Guiding Output: Prompts direct the AI to produce specific outputs, such as detailed reports,

creative writing, or mimicking a particular style (formal or conversational).

 Imparting Personality: prompts can adjust the AI's tone, making it respond humorously,

formally, or empathetically, enhancing the user experience in applications like customer

service.

 Providing Instructions: Prompts can specify the structure, style, or depth of the response,

giving users the power to direct how the AI approaches a task, such as providing a step-by-step

outline or summarizing information.

 Setting Context: Including contextual details in prompts ensures the AI's responses are relevant

and context-aware. Additionally, this approach can introduce new information that the models

haven't been trained on.

`

Academic year 2023/2024 17

Figure 16 Example components of Prompt Engineering for Language Model Input and Output

II.4.2 Techniques for Effective Prompt Engineering:

Prompt engineering is a powerful tool for leveraging the full potential of LLMs across various

applications. A properly crafted prompt has the potential to serve as the basis for creative applications

or features. In order to achieve optimal results from generative AI models, it is essential to prioritize a

number of important techniques:

 Clarity and Specificity: The prompt should clearly outline the expected responses from the

AI. Vague or ambiguous prompts often lead to generic or irrelevant responses.

 Iterative Refinement: Developing the perfect prompt is often an iterative process. By

continuously refining and tweaking prompts based on the AI's output, users can achieve more

precise and satisfactory results.

 Contextual Relevance and Instructions: Include relevant context, examples, and direct

instructions in the prompt to ensure the AI understands the format, style, and specific

requirements of the desired output. This guarantees that the AI tailors its response to the

particular situation or use case.

II.5 Retrieval-Augmented Generation (RAG)

Large language models (LLMs) are highly effective at generating human-like text and understanding

complex queries, but their knowledge is limited to the data they were trained on, which can become

outdated or lack specific information. Retrieval-Augmented Generation (RAG) addresses this limitation

by enhancing LLMs with real-time retrieval of relevant information from external sources, such as

vector databases. This technique ensures that the responses generated are not only coherent but also

accurate and up-to-date, especially when specialized or current information is needed.

II.5.1 Key Components of RAG:

 Embedding and embedding models: Convert input text into numerical vectors that capture

semantic meaning.

`

Academic year 2023/2024 18

 Vector Database: Stores and retrieves these vectors based on similarity to ensure relevant

information is accessed.

 Large Language Models (LLMs): Generate text based on the retrieved information provided

within the prompt.

By integrating these components, RAG systems are able to deliver responses that are not only

contextually relevant, but also informed by the latest available data.

Figure 17 Workflow of a Retrieval-Augmented Generation (RAG) System

II.6 Chatbots

As artificial intelligence has evolved, one of its most impactful applications has been in the development

of chatbots. These are software programs designed to simulate human-like conversations through text

or voice interactions. Leveraging advances in natural language processing (NLP) and machine learning,

chatbots can handle a wide range of tasks, from answering basic questions to managing complex

interactions.

II.6.1 Evolution of chatbots

Figure 18 History of chatbots

`

Academic year 2023/2024 19

Chatbots have come a long way since their inception, evolving through various stages of development.

The journey began with the Turing Test in 1950, a concept introduced by Alan Turing to determine

whether a machine could exhibit human-like intelligence. This set the foundation for future

developments in artificial intelligence and conversational agents. In 1966, ELIZA, one of the earliest

chatbots, was created to simulate a psychotherapist using simple pattern matching and substitution

methodologies. Fast forward to 1972, PARRY was developed, mimicking a person with paranoid

schizophrenia, showcasing more advanced natural language processing capabilities.

The evolution continued with more sophisticated chatbots like ALICE in 1995, which used natural

language processing to carry out more meaningful conversations, and Jabberwacky in 1988, focusing

on creating more human-like interactions through learning from past conversations. By the 2010s, we

saw the emergence of advanced AI-powered conversational chatbots such as Siri, Alexa, and Google

Assistant, capable of understanding voice commands and executing tasks. Today, chatbots utilize

sophisticated natural language processing (NLP) and machine learning (ML) techniques, allowing them

to handle complex queries and provide personalized responses in real-time.

II.6.2 Types of Chatbots

Chatbots can be broadly categorized based on their underlying technologies and functionalities:

Rule-Based Chatbots: These are the simplest form of chatbots that operate on predefined rules and

responses. They are suitable for straightforward tasks but lack the flexibility to handle complex queries

or understand nuanced language.

Conversational AI Chatbots: These advanced chatbots leverage AI and NLP to understand and

generate responses based on the input they receive. They are capable of managing multi-turn dialogues,

understanding context, and adapting their responses accordingly, making them ideal for more dynamic

and interactive applications.

Contextual Chatbots: These chatbots utilize machine learning to remember past interactions and use

this data to provide relevant and context-aware responses. They are designed to learn and improve over

time, making them more effective in handling complex user interactions.

Voice-Enabled Chatbots: As the name suggests, these chatbots can process and respond to voice

inputs. They are commonly integrated into virtual assistants like Siri and Alexa, enabling hands-free

operation and accessibility.

Hybrid Chatbots: These combine rule-based and AI-driven approaches to offer more flexibility and

adaptability in handling diverse user interactions. They can manage simple queries using rule-based

logic while employing AI for more complex, contextual conversations.

`

Academic year 2023/2024 20

II.6.3 Benefits of Chatbots

Chatbots provide several advantages that make them valuable tools for businesses and users alike:

Benefit Description

24/7 Availability Chatbots are available around the clock, ensuring continuous support and

service without downtime.

Multilingual They can communicate in multiple languages, making them accessible to a

global audience.

Consistency in

Answers

Chatbots provide uniform responses, ensuring that every customer receives

the same information.

Seamless

Transaction

They can handle transactions smoothly, improving the customer experience

and reducing friction.

Instant Response Chatbots provide immediate answers to user queries, enhancing customer

satisfaction.

Omni-channel They can be integrated across various platforms, offering consistent support

through different channels.

Personalized

Interaction

Chatbots can tailor their responses based on user data, providing a more

personalized experience.

Table 3 Different Benefits of Chatbots

II.6.4 Traditional Chatbot Vs Conversational AI

Figure 19 Difference between Conversational AI and Traditional chatbots

Overall, the progress of chatbots from simple rule-based systems to advanced conversational agents has

greatly expanded their abilities and potential uses in a wide range of industries. With the help of AI and

NLP, modern chatbots have the ability to offer highly personalized, efficient, and engaging experiences,

resulting in increased user satisfaction and improved operational efficiency.

`

Academic year 2023/2024 21

Chapter III: Tools and Technologies

This chapter outlines the tools and technologies used in the development of the chatbot system. We

discuss the role of FastAPI for the backend, the integration of MongoDB for database management, and

the utilization of OpenAI APIs for natural language understanding and response generation. The chapter

also covers LangChain and LangGraph, which were critical in managing multi-turn conversations and

ensuring the chatbot’s scalability and flexibility.

III.1 Development Tools and Environments

III.1.1 Python

Figure 20 Python logo

Python is a high-level, interpreted programming language known for its simplicity and readability,

making it accessible to developers of all levels. It is the primary language for our project due to its

extensive libraries and frameworks for machine learning and data science, which are essential for AI

development.

III.1.2 Visual studio Code

Figure 21 VS Code Logo

Visual Studio Code (VS Code) is a free, open-source code editor developed by Microsoft. It is popular

among developers for its lightweight design and extensive functionality. VS Code is highly

customizable, with a wide range of extensions that enhance productivity and support various

programming languages and frameworks. All of these features, including an incorporated terminal, Git

integration, and debugging tools, simplify the processes of coding, testing, and debugging, making it

suitable for diverse development tasks, including web development, data science, and AI.

`

Academic year 2023/2024 22

III.1.3 GitHub

Figure 22 Github Logo

GitHub is a web-based platform that uses Git, a distributed version control system, for code

collaboration and management. It provides repositories for hosting code, tracking changes,

collaborating through pull requests, and conducting peer reviews with comments and inline code

suggestions. Its collaboration features and use of branches enabled us to work on different features

simultaneously, ensuring that code remains clean, organized, and well-documented.

III.1.4 Next.js

Next.js is an open-source React framework that supports server-side rendering (SSR) and static site

generation (SSG) for web applications. Developed by Vercel, it improves performance and SEO by

rendering pages on the server rather than in the client’s browser, leading to faster load times and a better

user experience, particularly for dynamic websites with frequently changing content. Its integration

with React allows developers to use React's component-based architecture while gaining additional

performance benefits.

III.2 Backend Frameworks and Libraries

III.2.1 FastAPI

FastAPI is a high-performance web framework for building APIs with Python, designed for ease of use

and efficiency. It supports asynchronous programming, making it suitable for applications requiring

high concurrency and low latency. FastAPI also automatically handles data validation and serialization,

reducing the amount of code developers need to write. These features make it a great choice for creating

reliable and scalable backend systems.

III.2.2 LangChain and LangGraph

LangChain:

LangChain is a library that simplifies the development of applications powered by large language

models (LLMs). It simplifies the integration of LLMs, making it easier to handle complex workflows,

external data retrieval, and interactive conversations. With a comprehensive set of tools, LangChain

enables developers to build sophisticated, dynamic, and context-aware systems for various tasks such

as chatbots, content generation, and question-answering.

`

Academic year 2023/2024 23

Key Components of LangChain:

 LLM Interface: LangChain provides a simple API to connect with various LLMs, such as

GPT or Bard, allowing developers to interact with these models without having to manage the

complexities of integration.

 Prompt Templates: Prompt templates are reusable structures that help format queries in a

way that the LLM can understand and respond to appropriately. Developers can create these

templates to standardize inputs across different tasks, ensuring accurate and consistent

responses.

 Chains: The core concept in LangChain, chains are sequences of operations that connect user

inputs to the model’s output. A chain can include multiple steps, such as fetching data,

transforming it, querying the LLM, and formatting the response. This allows developers to

break down complex tasks into manageable steps.

 Agents: Agents take chains a step further by introducing dynamic decision-making into

workflows. They can assess the input and determine the appropriate next step or tool to use.

Agents enable applications to handle more complex queries or tasks that involve multiple

steps, such as managing diverse types of data sources or processing user interactions in real-

time.

 Memory: LangChain supports memory in applications, allowing them to recall previous

interactions and maintain context across conversations. This is crucial for building advanced

conversational agents that need to respond based on past exchanges, whether in a simple

recent context or through more detailed historical analysis.

 Retrieval Modules: LangChain facilitates the creation of Retrieval-Augmented Generation

(RAG) systems, where the model can access external data, such as internal documents, to

generate more accurate and contextually relevant responses. This feature enhances LLMs'

capabilities by allowing them to incorporate up-to-date or domain-specific information

without needing to be retrained.

LangGraph:

LangGraph extends LangChain by enabling more complex workflows that involve cyclical, dynamic

interactions. It introduces the ability to create graph-based workflows where nodes (representing tasks

or agents) and edges (representing the flow of data or decisions) can loop back, allowing for iterative

processes, which makes it ideal for complex AI-driven systems such as dynamic chatbots, automated

reasoning, and interactive applications.

Key Features of LangGraph:

 StateGraph: At the core of LangGraph is the StateGraph, where each node represents a task

or decision point, and the state evolves as the process progresses. This state is updated

dynamically as each node contributes to the overall outcome, enabling sophisticated multi-

step interactions.

 Cyclic Workflows: Unlike traditional chains, LangGraph allows for cycles, meaning that

tasks can be repeated or revisited based on the results of previous steps.

`

Academic year 2023/2024 24

 Agent Executors: LangGraph enhances agent-based workflows by allowing agents to

execute tasks in a loop, reasoning at each step about what to do next. This is particularly

valuable in scenarios like chatbot systems or RAG implementations, where an LLM may need

to reconsider and refine its approach to a problem repeatedly.

 Conditional Flows: In LangGraph, developers can define conditional edges, where the flow

between nodes is determined by the output of previous tasks. This adds flexibility to

workflows, allowing the application to adapt dynamically to different scenarios and input

variations.

III.2.3 Docker

Docker is a platform that automates the deployment of applications in lightweight, portable containers.

These containers package all necessary components, including code, runtime, libraries, and system

dependencies, ensuring consistency across different environments and preventing compatibility issues.

In this project, Docker was used to containerize backend services, enabling seamless deployment, which

improved the development workflow.

III.3 Databases and Storage

III.3.1 MongoDB database

MongoDB is a NoSQL database known for its scalability, flexibility, and ease of use. Unlike traditional

relational databases, it stores data in flexible, JSON-like documents with dynamic schemas that can

easily adapt to changing data structures. This makes MongoDB ideal for applications that need quick

development and frequent updates.

Figure 23 MongoDB Data Model and Document Structure

Widely used across industries, MongoDB efficiently handles large volumes of unstructured data. It's

well-suited for use cases like Internet of Things (IoT), mobile apps, real-time analytics, content

management systems, and personalization engines, all of which benefit from its ability to manage

diverse data types and provide fast, scalable solutions.

`

Academic year 2023/2024 25

For cloud-based deployments, MongoDB offers MongoDB Atlas, a fully managed cloud database

service that simplifies operations by automating tasks such as provisioning, backups, and scaling.

MongoDB Atlas ensures high availability, security, and seamless integration with major cloud

providers, handling database management complexities so teams can focus on development, making it

an excellent choice for companies looking to build scalable, secure, and reliable cloud applications.

III.3.2 Amazon Web Service

Amazon Web Services (AWS) is a comprehensive cloud computing platform offering a range of

services, including computing power, storage options, and databases. In this Project, AWS was used for

its reliable infrastructure and its flexibility to adjust resources dynamically based on demand. AWS

services, such as Amazon S3 for storage, Amazon EC2 for computing, and Amazon RDS for managed

databases, provided a robust and adaptable environment for managing the project’s backend, while

offering global reach and high availability to ensure reliable performance for users worldwide.

III.3.3 Redis

Redis (Remote Dictionary Server) is an open-source, in-memory data structure store that functions as a

high-performance database, cache, and message broker. Unlike traditional relational databases that store

data on disk, Redis operates entirely in memory, resulting in exceptionally fast read and write

operations. Its speed and versatility make it ideal for use cases requiring low-latency data access, such

as caching, real-time analytics, session management, and high-speed data processing.

Classified under the NoSQL database category, Redis stores data in the form of key-value pairs where

each key is a unique identifier, and the value can be one of several supported data types. These data

types include strings, hashes, lists, sets, sorted sets, bitmaps, hyperloglogs, and streams, each of which

has specific operations and commands tailored to efficiently manage data in various scenarios. For

example, strings can be manipulated with operations like SET and GET, lists can be used to create queues

or stacks with commands like LPUSH and RPOP, while sets handle collections of unique elements with

commands like SADD and SREM.

Figure 24 Redis Data Types and Key-Value Storage Model

`

Academic year 2023/2024 26

III.4 APIs and Integrations

III.4.1 OpenAI APIs

OpenAI offers a range of APIs that allow developers to integrate powerful language models into their

applications, catering to different needs, from simple text generation to more structured and context-

rich interactions, enabling a wide array of use cases.

III.4.1.1 Standard Chat Completion API

The OpenAI Chat Completion API utilizes models like GPT-4 to generate conversational responses

based on user input. This API is designed for tasks that require coherent and contextually relevant text

generation, much like interacting with ChatGPT in a conversational format.

Capabilities of the Chat Completion API:

 Natural Language Understanding: The API is proficient in understanding and processing

natural language inputs, making it suitable for conversational applications.

 Content Generation: It excels at generating human-like text, making it ideal for creative

writing, customer support, and any application requiring dynamic text responses.

 Customizable Responses: By modifying the prompts, developers can tailor the responses to

fit specific needs, guiding the model's behavior to match desired interaction styles.

 Context Management: The Chat Completion API can maintain context across multiple turns

within a session, similar to chatting with ChatGPT. However, it primarily operates in a session-

based manner, without retaining long-term context or utilizing external documents.

III.4.1.2 OpenAI Assistant API

The OpenAI Assistant API builds upon the capabilities of the standard Chat Completion API, adding

advanced tools for managing more structured interactions. This API is ideal for applications that require

detailed context management, dynamic guidance, and the ability to reference external documents to

provide accurate and informed responses.

Key Features of the OpenAI Assistant API:

 Instructions for Customization: Developers can provide specific instructions that dictate how

the assistant should behave and respond, allowing for highly tailored interactions.

 Dynamic Context Management: The Assistant API maintains a more sophisticated level of

context throughout interactions, useful for complex multi-turn dialogues that require

understanding of previous exchanges and coherent progression.

`

Academic year 2023/2024 27

 Grounding with Documents: A standout feature of the Assistant API is its ability to store and

reference external documents, allowing it to retrieve and incorporate relevant information from

these documents into its responses, making it suitable for applications that require data retrieval.

 Multi-Modal and Multi-Language Support: The API supports multiple languages and can

potentially handle various media types, depending on the integration, broadening its

applicability across different use cases.

 Seamless Integration: Designed for cross-platform compatibility, the Assistant API ensures a

uniform user experience across different digital environments.

Figure 25 OpenAI Assistant API playground interface

The previous figure demonstrates the OpenAI Assistant API playground interface, highlighting how

instructions, grounding documents, and user inputs are managed to generate context-aware responses.

This visual representation helps in understanding how the API operates and can be customized for

different applications.

III.4.1.3 OpenAI Whisper

OpenAI Whisper is a speech recognition system that converts spoken language into written text. We

integrated this tool into our project to enable voice-based interactions, allowing users to communicate

with the chatbot via spoken commands. Whisper's accurate transcription of speech supports a more

natural and accessible user interface for those who prefer voice over text inputs. Its integration with the

OpenAI API ensures seamless processing of voice commands, enhancing the overall functionality and

user experience of the chatbot system.

`

Academic year 2023/2024 28

III.4.2 Meta Cloud API

Meta's Cloud API is a powerful platform that enables businesses to integrate Meta services, such as

Facebook Messenger, Instagram Direct, and WhatsApp, directly into their applications. This integration

supports the automation of messaging, customer interactions, and other key functions across these

platforms, making it a vital tool for businesses seeking to improve their customer service and

operational efficiency. For example, a business could use Meta Cloud API to manage customer inquiries

on Facebook Messenger, send real-time updates via WhatsApp, and engage customers through

Instagram—all from a single interface.

III.4.2.1 WhatsApp Cloud API

The WhatsApp Cloud API is a specialized extension of Meta's Cloud API, designed specifically for

integrating WhatsApp's messaging capabilities into business systems. It automates and streamlines

tasks such as order confirmations, customer support, and sales processes with minimal human

intervention. With support for multiple programming languages and rich media capabilities, this

versatile API adapts to businesses of all sizes. Its flexibility enables companies to sustain continuous

communication with customers on WhatsApp, improving both engagement and satisfaction.

The WhatsApp Cloud API offers powerful features that help businesses automate interactions and

enhance communication. Some of the key features include:

III.4.2.2 WhatsApp Templates:

WhatsApp Templates are pre-approved message formats that businesses can use to initiate

conversations or send notifications outside the standard 24-hour messaging window. They are essential

for maintaining consistent communication, ensuring that important updates reach customers promptly.

For instance, a business might use a WhatsApp template to send order confirmations, appointment

reminders, or promotional offers. These templates can be customized with variables such as the

customer's name or order details, allowing for personalized and direct interactions.

Figure 26 Example of WhatsApp Templates for Customer Notifications

`

Academic year 2023/2024 29

III.4.2.3 WhatsApp Flows

WhatsApp Flows are a sophisticated feature of the WhatsApp Business API, designed to create

interactive and automated conversation pathways. These flows allow businesses to guide users through

a series of predefined steps, automating customer interactions to ensure a smooth user experience.

Unlike simple messaging sequences, WhatsApp Flows incorporate various components—such as text,

images, buttons, and input fields—creating a cohesive journey within the chat interface.

These workflows are defined using Flow JSON, a structured format developed by Meta to help build

and customize interactions within WhatsApp. Businesses can utilize this format to access WhatsApp

Flows features through a custom JSON object, which specifies the structure of the flow, including the

screen sequence, user input fields, and actions triggered by user responses. The workflows are fully

initiated, executed, and managed entirely inside WhatsApp, enabling the creation of complex multi-

screen interactions that guide users through processes such as booking, customer service inquiries, and

product returns.

For example, a Flow JSON might specify a screen asking for the user’s first and last names, followed

by another screen asking for their email address. Depending on the inputs, the flow can proceed to

different screens or trigger specific actions like sending a confirmation message or logging the data in

a backend system.

Figure 27 Example of FLOW JSON and its result

The key advantage of using WhatsApp Flows lies in their ability to provide a richer user experience

through structured and interactive conversation pathways. By leveraging the WhatsApp Cloud API and

`

Academic year 2023/2024 30

Flow JSON, businesses can streamline customer interactions, automate routine tasks, and enhance

overall engagement on the platform.

Figure 28 Example of WhatsApp Flows for Booking and Customer Engagement

III.4.2.4 Webhooks

Webhooks are a powerful component of the WhatsApp Cloud API, designed to facilitate real-time

communication between WhatsApp and other integrated systems. A webhook is essentially an HTTP

callback that is triggered by specific events, such as receiving a new message or updating the status of

a message. And when using WhatsApp flows and templates, webhooks captures customer’s interactions

in real time, such as clicking a button, submitting a form, or sending a response. This allows businesses

to automate responses or actions based on these events, enhancing the efficiency and customization of

customer interactions.

For example, businesses can configure webhooks to automatically send a follow-up message if a

customer does not respond within a specified timeframe, or to update a database when a customer’s

query is resolved.

III.4.3 Hostaway

Figure 29 Hostawat logo

Hostaway is an all-in-one property management software (PMS) and channel manager designed

specifically for vacation rental businesses. It serves as a comprehensive solution for property managers

and owners by centralizing and automating various aspects of rental operations. Hostaway integrates

seamlessly with major booking platforms like Airbnb, Booking.com, Vrbo, and Expedia, allowing users

to manage multiple properties across different channels from a single interface.

`

Academic year 2023/2024 31

Figure 30 Overview of Hostaway's Dashboard

III.4.3.1 Key Features of Hostaway

Hostaway simplifies property management by offering a wide range of features:

 Centralized Property Management: As a unified platform, Hostaway allows property

managers to oversee listings, reservations, guest communications, and payments across

multiple booking sites, reducing the need for multiple platforms and streamlining operations.

 Channel Manager: Hostway’s capabilities ensure real-time synchronization of property

listings, availability, and pricing across all connected booking platforms, preventing double

bookings and optimizing revenue.

 Automated Messaging and Communication: Hostaway automates guest communications by

sending pre-configured messages for various stages of the booking process, such as

confirmations, check-in instructions, and check-out reminders.

 Advanced Analytics and Reporting: The platform provides in-depth analytics and reporting

tools that allow property managers to monitor performance metrics like occupancy rates,

revenue, and booking sources, enabling data-driven decision-making to improve profitability.

 API Integration: The Hostaway API provides developers with the ability to access and

manipulate data stored within the Hostaway platform. This API is essential for creating custom

integrations and applications that can extend the functionality of Hostaway to better suit the

unique needs of each property management business. This feature is particularly beneficial for

property managers who need to synchronize data with other software systems, such as

accounting or customer relationship management (CRM) tools.

 Task Management and Automation: Hostaway includes tools for managing and automating

tasks such as housekeeping, maintenance, and other operational duties. Property managers can

assign tasks, track their progress, and receive notifications upon completion, ensuring that

properties are well-maintained and guest-ready at all times.

`

Academic year 2023/2024 32

Chapter IV: System design and

implementation

Chapter 4 dives into the technical details of the system’s design and implementation. It begins with the

preparation of the database, followed by the integration of APIs, and concludes with the construction

of the chatbot’s Retrieval-Augmented Generation (RAG) system. This chapter also addresses the

challenges faced during the development process and how they were overcome by transitioning to a

more advanced system leveraging LangGraph for routing queries.

IV.1 Database Preparation

To develop our AI-powered customer service chatbot for property management, establishing a robust

and flexible database was essential. The database needed to maintain data integrity, ensure scalability,

and allow seamless integration with various property management platforms. This setup enables real-

time updates and accurate responses to user inquiries.

IV.1.1 HostAway API Integration

HostAway serves as our main property management system, offering comprehensive API capabilities

to manage property listings, reservations, and calendars. By integrating the hostAway API, we made

sure that our database stayed in sync with the hostAway system, providing our customer support with

easily accessible, up-to-date information.

Figure 31 Example of Hostaway API Listing Fields

In order to get insight into what our database should be prepared to receive from Hostaway, we

conducted a detailed analysis of the HostAway API to ensure a thorough understanding of its data

structure and functionality, focusing on key data points such as property specifications and reservation

details.

`

Academic year 2023/2024 33

IV.1.2 Custom Database Design and Field Analysis

Based on our analysis of HostAway, along with insights from other platforms like Booking.com and

Airbnb, we started the process of creating a customized database structure that suits our needs. This

involved aligning our fields with common attributes across platforms, such as "property name," "check-

in date," and "guest contact information," while also creating custom fields specific to our particular

services, like "cleaning schedule" of each property, which customers could check and personalize

during their stay.

The database that was initially created consists of:

 Listings Table: Stores property details, including descriptions, amenities, pricing, and custom

fields for additional features unique to our operations.

 Reservations Table: Tracks booking details, guest information, check-in and check-out dates,

payment status, and any special requests or notes, allowing flexibility for additional

information.

 Calendar Table: Manages availability and scheduling, ensuring accurate booking information

across all platforms.

Figure 32 Preparation of Reservation Fields for Database Integration

In addition, we developed other tables to support our management needs and future use cases, such as

a Guest Behavior Table for a potential recommendation system, a Tasks Table for managing operational

tasks like cleaning requests, and a Chatbot History Table for tracking interactions and improving.

By designing the database, we ensured seamless integration of data from both HostAway and our own

system, providing a unified source of information for the chatbot to access.

`

Academic year 2023/2024 34

Figure 33 Custom Guest Behavior Fields for Enhanced Data Analysis

IV.2 Exploring existing solutions

In developing an AI-powered customer service chatbot, our goal was to provide a seamless, multi-

platform communication experience for users. The process involved evaluating existing solutions and

eventually creating a tailored chatbot that could meet our specific needs.

IV.2.1 Evaluating Chatbot Building Platforms

Our initial strategy involved investigating chatbot development frameworks that could seamlessly

integrate with our existing systems, aiming to avoid building a solution entirely from scratch. However,

most of the frameworks we evaluated were not able to manage the specific workflows or provide the

detailed data integration required for our property management operations.

Chatbot Frameworks Considered:

Framework Key Features Limitations

Known for Google Cloud integration

and natural language understanding.

Lacked the property management

features we required.

Microsoft

Bot Framework

Offers robust chatbot-building tools. Did not provide seamless multi-platform

support or handle real-time data.

Useful for basic automation and

marketing.

Unsuitable for complex property

management with dynamic data.

Table 4 Existing Chatbot Building Platforms

`

Academic year 2023/2024 35

IV.2.2 Evaluating Pre-Built Chatbots: HostAI

During our research, we explored several pre-built chatbot solutions, including HostAI. Designed

specifically for property management, HostAI integrates advanced AI with property-specific

information to deliver automated, context-aware responses to guest inquiries.

Features and Capabilities of HostAI:

 Its 24/7 availability and automated responses allow it to efficiently handle common inquiries

about Wi-Fi, check-ins, and dining options, reducing the need for human intervention.

 HostAI's seamless integration with HostAway allows it to pull real-time data on property

listings, reservations, and guest communications to provide guests with accurate information.

 The chatbot interface allows for the management of booking inquiries, modifications, and

cancellations, while also providing real-time updates.

 HostAI boosts revenue and guest satisfaction by personalizing responses and suggesting

additional services based on guest preferences and past interactions, such as local tours or late

checkouts.

Despite these features, HostAI did not fully meet our requirements due to its limited integration

capabilities. While it integrates seamlessly with HostAway messaging, it is heavily dependent on this

platform and lacks the flexibility to operate across other channels. Our business model requires

communication across multiple platforms, such as our website, social media, and messaging apps.

Therefore, it was unsuitable for our communication strategy.

IV.2.3 Implementation of OpenAI Assistants API

After evaluating pre-built solutions, we implemented OpenAI's Assistants API, configuring it with

specific instructions and data files to handle a wide range of inquiries.

However, while this setup worked well for standard queries, it had notable limitations that made it

unsuitable for our large-scale system. The primary issue was the lack of real-time data handling. The

OpenAI Assistant developed relied on static data files, necessitating manual updates to property

information, bookings, or guest inquiries, a process that was both time-consuming and prone to errors.

This also limited the assistant's context awareness, reducing its ability to handle dynamic queries

effectively.

Recognizing these challenges and the need for real-time data integration led us to develop a more

flexible system using Retrieval-Augmented Generation (RAG) to dynamically retrieve information

from our MongoDB database.

`

Academic year 2023/2024 36

IV.3 Building the Initial RAG System

To address the limitations of static data in pre-built chatbot solutions, we adopted Retrieval-Augmented

Generation (RAG). This approach enhanced our AI-powered chatbot by combining retrieval-based

techniques with generative models, enabling it to access real-time information from our database. As a

result, the chatbot can provide contextually relevant, accurate, and personalized responses based on the

most current data.

IV.3.1 Database Preparation for RAG

To build an effective retrieval-augmented generation (RAG) system, the first step was to set up a robust

vector database to store and manage embedded data. Since our data was already housed in MongoDB,

we utilized MongoDB Atlas Vector Search for its seamless integration with our existing infrastructure

and its efficient handling of high-dimensional vector data. This choice ensured a unified system that

enabled fast, efficient similarity searches to retrieve contextually relevant records in response to user

queries.

With the vector database in place, the next step was data embedding. Data embedding involves

converting text data from our various tables, such as Listings, Reservations, and Calendar, into vector

representations.

IV.3.1.1 Data Consolidation:

To prepare the data for embedding, we focused on key fields from each table that were most relevant

to user queries. This consolidation into "summary" fields ensured that all pertinent details were included

in the embeddings, making them more effective for the RAG system.

For the Listings, we combined essential fields such as property type, name, location, amenities, pricing,

etc., into a summary, to create a comprehensive overview of each listing.

Figure 34 Summary Structure for Listings

`

Academic year 2023/2024 37

Similarly, in the Reservations table, we summarized fields like guest details, booking dates, payment

status, etc., to provide a concise yet informative snapshot of each reservation.

Figure 35 Summary Structure for Reservations

For the Calendar entries, we focused on summarizing availability, pricing, stay requirements, etc.,

offering a clear view of booking possibilities.

Figure 36 Summary Structure for Calendar Entries

IV.3.1.2 Data Embedding and Indexing

After preparing the relevant text data, we proceeded with the embedding and indexing process to

prepare the vector database for efficient retrieval.

 Data Preprocessing: We cleaned and normalized the text to remove any inconsistencies,

ensuring uniformity across the data and preventing irregularities from interfering with the

embedding process.

 Splitting and Embedding: To handle larger text blocks more efficiently, we split the text into

smaller chunks. We then passed these chunks through the embedding model, transforming them

into vector representations that capture the semantic meaning of the content.

 Indexing Configuration: To ensure efficient retrieval, we set up MongoDB Atlas Vector

Search to index the embedded vector. Indexing organizes the vector data by creating indexes,

allowing the system to quickly locate and retrieve relevant embeddings in response to user

queries.

IV.3.2 Query Processing and Workflow

As for processing the user's question, it involves several steps to fit seamlessly into our system. The

following diagram illustrates the key stages:

`

Academic year 2023/2024 38

Figure 37 Query Processing Workflow in RAG System

First, the query is translated into English to align with the language used in our database, ensuring

consistency in embedding and search operations. The translated query is then embedded into a vector

format, enabling a similarity search. Finally, the MongoDB Atlas Vector Search database retrieves the

top 10 to 15 most similar documents, balancing the need for sufficient context while avoiding an

overload of information.

IV.3.3 Response Generation with LLM

The final step in the RAG workflow involves generating responses using a Large Language Model

(LLM). This step is critical because it converts the retrieved data into well-structured and meaningful

responses for the users. The effectiveness of this stage largely depends on prompt engineering.

IV.3.3.1 Prompt Engineering

The prompt serves as a set of instructions that dictate how the LLM should interpret the input data and

generate output. In our RAG system, the prompt structure is carefully designed to include indentity of

the assistant, history, user’s question and the retrieved information. The prompt consists of several

components that collectively guide the LLM:

Figure 38 Prompt structure for llm in the initial rag system

`

Academic year 2023/2024 39

IV.3.3.2 Model choosing and Evaluation

In the LLM phase of our RAG system, we evaluated different AI models to determine the most suitable

for our needs. We tested both LLaMA and OpenAI models to assess their performance in generating

high-quality responses for our chatbot.

LLaMA, an open-source model, offers a good balance of speed and cost-effectiveness as it is free to

use. However, In our initial tests, without the ability to fine-tune due to limited data, LLaMA did not

perform well with complex queries and lacked the depth in understanding and response accuracy needed

for our use case. This limitation highlighted that, while LLaMA is fast and efficient for rapid interaction

scenarios, it falls short in delivering high-quality, nuanced responses without further customization.

On the other hand, OpenAI models performed better in understanding complex user inputs and

generating context-aware, coherent responses. OpenAI’s advanced natural language processing

capabilities allowed us to implement effective prompt engineering, which compensated for the lack of

fine-tuning. This flexibility enabled us to tailor the chatbot's behavior according to our specific needs

without extensive retraining. While OpenAI models are slightly slower than LLaMA due to the depth

of processing, their ability to handle sophisticated conversations with high accuracy.

Model Speed Quality Open Source

LLaMA Fast Moderate Yes

OpenAI API Moderate High No

Table 5 Comparison of AI Models

This table summarizes the differences between the two models, highlighting OpenAI's superior quality

in response generation. Despite not being free, OpenAI aligned with our main focus on delivering high-

quality responses. We prioritized precise and high-quality outputs, making OpenAI the best choice for

our needs.

IV.3.3.3 Embedding Model

For generating vector embeddings, we chose OpenAI's Ada model. This decision was driven by a desire

to maintain consistency throughout our system, as we were already using OpenAI’s models for text

generation. The Ada model excels in capturing semantic meaning, ensuring compatibility with our

overall architecture.

The Ada model was used not only to embed the data into our vector database but also to embed user

queries when they arrived, ensuring efficient and accurate similarity searches.

`

Academic year 2023/2024 40

Figure 39 Workflow of the initial Retrieval-Augmented Generation (RAG) System

IV.3.4 Role of LangChain in RAG:

To manage the complex interactions within our RAG system, LangChain’s

ConversationalRetrievalChain and ConversationBufferMemory played critical roles in handling

multi-turn conversations. The ConversationalRetrievalChain creates a seamless flow from the user's

query to the final response generated by the LLM, rephrasing questions based on previous context and

supplying the model with retrieved documents. Meanwhile, ConversationBufferMemory preserves

the conversation history across multiple interactions, enabling the system to reference past exchanges

during prompt engineering and maintain dialogue continuity.

This approach ensures that the system remains responsive not only to the current query but also aware

of the ongoing conversation, resulting in more personalized and accurate responses.

IV.3.5 Challenges and Limitations

The primary challenge with the initial RAG implementation was a lack of precision and relevance in

the retrieved information. Since the system pulled data from multiple tables, it often surfaced details

that weren’t contextually relevant or personalized to the user’s query, resulting in overly long contexts

that weren’t necessary for generating accurate responses. For example, a query about a specific

reservation might also retrieve general information about listings or unrelated guest details,

overwhelming the language model and leading to responses with additional information that the user

didn’t request.

In summary, these challenges underscored the limitations of a one-size-fits-all retrieval strategy in a

complex domain like property management. They highlighted the need for a more refined and

specialized approach that retrieves only essential information based on the nature of the query while

managing context more efficiently.

`

Academic year 2023/2024 41

IV.4 Transition to Advanced RAG System

To address these limitations, we moved to a more refined approach with query classification and

routing. By classifying queries based on their intent, the system could retrieve only the necessary

information, narrowing down the data to what's most relevant.

IV.4.1 Development of Graph-Based RAG System

This system was achieved using a graph-based routing mechanism with LangGraph, which breaks down

the query processing workflow into distinct, interconnected tasks. Each task, represented by a node,

performs a specific function within the system, while the edges define the flow of information between

these tasks.

LangGraph extends the capabilities of LangChain by enabling the creation and management of

complex, stateful, multi-agent workflows in AI applications that utilize LLMs effectively. In this setup,

each node represents an LLM agent, and the edges represent communication channels between the

agents. This graph structure ensures clear and manageable workflows, where each agent performs

specific tasks and passes information to other agents as needed, allowing the chatbot to handle multiple

interactions simultaneously, efficiently routing queries based on their classification.

IV.4.1.1 System Architecture Overview

Figure 40 Langgraph system design

The system uses OpenAI's GPT-4 model as the core decision-maker, handling translation, query

categorization, and response generation to ensure accurate and context-aware outputs.

`

Academic year 2023/2024 42

The workflow of our graph-based system follows these steps:

Initial Query Handling:

 Translate Text Node: The first step involves translating the incoming query into English using

the GPT-4 model. This ensures consistency in language, aligning the query with our database

schema for accurate processing.

 Check Reservation Number Node: After translation, the system checks if the user has an

associated reservation number. If a reservation is found, the query is processed as a "query with

reservation." If not, it is treated as a "query without reservation."

Handling Queries Without Reservation:

 General Question Check: For users without a reservation, the system first determines if the

query is a general question. If it is, the chatbot provides a general response using OpenAI's

model. If the query is more specific, the system may ask for a reservation ID to provide a more

tailored response.

 Category Classification: If no reservation ID is needed, the system categorizes the query based

on its content. This classification helps in directing the query to the appropriate node, ensuring

a relevant and accurate response.

Handling Queries With Reservation:

 Categorization and Routing: For queries associated with a reservation, the system categorizes

the query into predefined categories such as booking details, check-in instructions, or property

information. This step ensures the query is routed to the correct data nodes for accurate

information retrieval.

Fallback and Miscellaneous Nodes:

 Send Categories Node: If the system cannot directly categorize a query, it sends a list of

available categories to the user, prompting them to specify their request further.

 Default Node: For uncategorized queries, the system generates a default response using the

LLM, providing a generic yet informative answer.

This system efficiently manages various types of queries based on their classification, ensuring

personalized responses for both general inquiries and reservation-specific questions.

Below is an example of how the system handles a general query without a reservation:

`

Academic year 2023/2024 43

Figure 41 Example of Handling a General Query Without Reservation

As shown in this figure, the system first translates the user's query to English, then checks if the user

has an associated reservation. Since no reservation is found in this case, the query is processed as a

general question.

IV.4.2 Multi-Channel integration

IV.4.2.1 Multi-Channel Integration and Deployment

To meet diverse user needs and enhance customer service, our chatbot system aim to be integrated

across multiple platforms, including the website, WhatsApp, and in home voice activated device. This

multi-channel deployment ensures that users receive consistent support and information, regardless of

their preferred communication channel, thereby broadening our reach and improving overall user

satisfaction.

To achieve seamless multi-channel integration, we developed an API using FastAPI. This API is

designed to efficiently receive and process user queries from various communication platforms, such

as the website, WhatsApp. It serves as a centralized hub, routing user queries through our graph-based

system for processing and response generation. This approach ensures that each interaction is managed

consistently and accurately, regardless of the channel through which it originates. By leveraging this

API, we ensure that the chatbot adapts to the diverse communication preferences of our users.

`

Academic year 2023/2024 44

IV.4.2.2 Unified Workflows for All Channels

IV.4.2.2.1 LLM with Data Retrieval Workflows

For certain categories of customer inquiries, we employ a Retrieval-Augmented Generation (RAG)

system to provide precise and relevant responses. This approach combines retrieving information from

our database and generating tailored responses using OpenAI’s api model. The categories that utilize

this RAG system include:

 Reservation Inquiries: For questions related to a customer's reservation, we retrieve specific

booking details such as reservation status, arrival and departure dates, and other relevant

information.

 Company Information: For queries about Sojori, we retrieve a detailed company description

from the database to provide accurate information.

 Property Information: For inquiries concerning property details, we fetch comprehensive

information about the property of interest, including amenities, policies, and other relevant

details.

 Access Codes: For requests regarding access codes to properties, we retrieve the necessary

door codes for entry.

 Access Information: For questions about how to access the property, we provide instructions

for parking, building entry, and apartment access.

After retrieving the appropriate data, we use prompt engineering to define a prompt template for

OpenAI’s language model. This template outlines the task and role, presents the user’s question,

includes the retrieved information, and provides precise instructions to ensure the response is direct and

tailored to the user’s needs.

Figure 42 Workflow for RAG-Based Inquiry Handling

`

Academic year 2023/2024 45

Example of Booking Inquiry Handling Using LLM with Data Retrieval:

As shown in the figure, when a customer's query requires a

reservation, and the system does not already have the

information, the chatbot first prompts the user to provide a valid

reservation ID. If not, the system prompts for the correct one.

Once confirmed, the chatbot retrieves relevant reservation

details from the database, and generates a personalized response

using an LLM with data retrieval, as demonstrated in the

example.

IV.4.2.2.2 LLM Without Data Retrieval Workflows

In some categories of customer inquiries, there is no need to retrieve real-time data since we rely on

predefined, static information. For these types of queries, we use an automated response system

supported by OpenAI's language model (LLM). Once we classify the query's intent into one of these

specific categories, we prepare a prompt with clear category-specific guidelines tailored for the LLM

to generate an appropriate response.

Figure 44 Response Workflow for Static Information Categories

Figure 43 Example of the chatbot system handeling question requires reservation

`

Academic year 2023/2024 46

The system follows these steps for each specific category:

Useful Numbers:

If the customer asks for useful numbers, the system provides instructions to the LLM containing static

information about essential contact numbers, police, ambulance. tourist police, Firefighters.

then the OpenAI model generates a response with a list of the useful numbers requested or all of them.

Room Service:

For room service inquiries, once the intent is detected, the system instructs the LLM to analyze the

user's request and generate a structured response.

Response Example:

"Room Service:

You have requested the following items/services:

- Towels: 2

- Soap.

Please confirm if the list is correct or cancel your room service request. If there are any changes

or additional requests, please specify them. Thank you!"

After the user confirms the request, a task is created in the database with details about the room service

request, marked with urgency as 'Urgent.' to notify the staff.

Technical Issues:

For technical issues, the system may involve two separate processes, depending on the user's input.

 If an image is sent, one OpenAI agent analyzes the image to determine the issue and asks for

additional details if needed.

 If a text description is provided, another agent processes the description and acknowledges

receipt, indicating the issue will be addressed.

A task object for the technical issue is then created in the database, marked as 'Urgent,' and includes

details from the user's input and any analyzed image data.

`

Academic year 2023/2024 47

Example of Room Service Inquiry Handling:

Figure 45 Example of Room Service Inquiry Handling

IV.4.2.3 WhatsApp-Specific Workflows:

For certain categories, we have developed workflows specifically tailored to WhatsApp, leveraging its

automation tools and user-friendly interface to create a more intuitive and engaging experience. In

contrast, the workflows for these same categories on the website follow the unified approach, either

using the LLM with RAG for complex queries or providing static instructions for simpler tasks.

To implement WhatsApp-specific workflows, we utilized WhatsApp Manager to create flows that guide

user interactions, simplifying processes and enhancing user experience. One such example is the flow

built for choosing a language, implemented using the Flow JSON structure:

Figure 46 Example of a WhatsApp Flow JSON for Language Selection

This led us to develop specialized workflows, with a seamless and efficient user experience on

WhatsApp for the following categories:

 Language Choosing Node workflow:

`

Academic year 2023/2024 48

In our WhatsApp communication, we prioritize engaging with users in their preferred language. During

the initial interaction, we utilize an OpenAI agent to determine the most appropriate language based on

the user's phone number and the language of their first message. This detected language is set as the

default for all subsequent interactions. However, if we notice that the user frequently sends messages

in a different language, we dynamically adjust the language settings to better align with their

preferences.

Figure 47 Example of Language determination Results Based on User's Phone Number

After the initial language is set, users have the option to change it by sending a message requesting a

language change. When the system detects that, the user’s intent is related to selecting or changing the

language, it follows the workflow outlined in the diagram below.

Figure 48 Language Change Workflow in WhatsApp Backend

This workflow includes receiving the language change request, sending the appropriate WhatsApp flow

for language selection. As shown in the example, the user chooses 'English,' the language preference is

updated, and subsequent communications continue in English.

`

Academic year 2023/2024 49

Figure 49 Example of Language Change Workflow in WhatsApp Chatbot Interface

 Check-in, checkout and house cleaning:

For categories such as arrival, departure, and House Cleaning, if the user's question intent is classified

under any of these categories, the WhatsApp backend automatically triggers the corresponding

WhatsApp flow based on the identified category. This flow sends a tailored message to the user on

WhatsApp, asking for the necessary details or preferences.

Once the user's response is received through the WhatsApp flow, the system updates the MongoDB

database with the appropriate task type. This could include scheduling a specific arrival time, requesting

a late departure, setting an early arrival, or choosing a preferred cleaning time. This ensures that the

user's preferences are accurately recorded and processed.

Figure 50 Workflow for Handling Requests via WhatsApp Flows

`

Academic year 2023/2024 50

Below is an example of the WhatsApp flows and the interfaces as they appear to users.

Figure 51 WhatsApp Interface for Selecting Check-in, Checkout, and Cleaning Options

 Online check-in process:

Figure 52 Workflow for Online Check-in Process Using WhatsApp Flow and OpenAI

For a more complex process like online check-in or guest registration, the workflow begins when a

customer requests to initiate the online registration process. We start by sending a WhatsApp flow

interface that displays the user's booking details, such as dates, the number of guests, and the verification

`

Academic year 2023/2024 51

status of registered guests. This interface also allows the user to select which guest they want to register

and specify the type of identification document they will provide.

Figure 53 Guest and registraction document selection flow

Once the user has selected the guest and document type, we send a message instructing them

to upload an image of the identification document. Upon receiving the image, we pass it

through an OpenAI language generation model, where we use prompt engineering to ensure

the model returns the extracted personal information in a specific JSON format. This JSON

format is designed to be compatible with the WhatsApp flow system, allowing us to pre-fill the

registration form. The prefilled form is then sent back to the customer via WhatsApp, where

they can review, correct, and finalize the details.

Figure 54 Example of online check-in form

`

Academic year 2023/2024 52

After the customer completes and submits the registration form, we update our database with

the newly registered guest's information, ensuring all details related to their reservation are

accurately recorded. This automated process streamlines the online check-in, making it

efficient and user-friendly.

IV.5 Dashboard Chat and Session handling

In the implementation of our chatbot system, handling user states and managing chat sessions are critical

for delivering a smooth and efficient user experience.

IV.5.1 State Handling

The state refers to what the chatbot expects next from the user, such as waiting for an image, a

reservation ID, or other specific inputs depending on the ongoing conversation. To manage these states

effectively, we use Redis, a high-performance in-memory database. Redis allows us to store and quickly

access the state of each user session due to its speed and efficiency in handling data in memory.

Using Redis for State Management:

 User State Tracking: Each user interaction is assigned a unique identifier. Redis stores the

current state of each user’s interaction, allowing the chatbot to know what the next expected

action is. For example, if the chatbot is waiting for an image, this state is stored in Redis, and

the system will know to expect an image next rather than a text response.

 Session Continuity: Redis enables quick read and write operations, which ensures that user

sessions are managed in real-time. If a user disconnects and reconnects, Redis helps maintain

session continuity by recalling the last known state.

IV.5.2 Storing chat History

Apart from managing states, storing chat history is crucial for reviewing interactions and improving

service. We use Redis to temporarily hold a portion of the chat history for quick access and efficient

response generation. Redis allows us to retrieve relevant context swiftly before providing an answer.

After each interaction, both the user’s question and the chatbot’s response are stored directly in our

primary database. This approach ensures that all interactions are documented for future analysis and

visualization while maintaining fast response times during active sessions.

`

Academic year 2023/2024 53

Figure 55 Example of a user’s chat history stored in MongoDB

IV.5.3 Dashboard Visualization

To visualize the stored chat history and session data, our dashboard consolidates all user interactions,

whether they originate from the website or WhatsApp. This comprehensive aggregation allows

administrators to view every conversation in real-time, facilitating immediate responses and manual

interventions when necessary. Additionally, the dashboard displays detailed information related to each

user, including their reservations and tasks, providing a complete overview of the customer's interaction

history and current needs.

Figure 56 Real-time Chat Visualization and User Interaction Dashboard

`

Academic year 2023/2024 54

General Conclusion and Perspectives

The development of the chatbot system for Sojori Holding marks a significant step in advancing

customer service and property management. By leveraging AI technologies like Large Language

Models (LLMs) and a Retrieval-Augmented Generation (RAG) system, the solution has automated the

handling of complex customer inquiries across multiple platforms, including WhatsApp and the

company's website. This system not only streamlines interactions by providing instant, contextually

aware responses but also supports a personalized experience that reflects Sojori’s commitment to

enhancing customer satisfaction. Through the integration of efficient backend systems and state-of-the-

art AI tools, the project has met its primary objective of creating a scalable, intelligent, and adaptable

chatbot tailored to the company’s needs. The successful implementation highlights the potential for AI-

driven automation to transform customer service in smart home rentals and beyond.

In conclusion, this product is still in the development phase, marking just the beginning of the journey

towards creating a fully optimized chatbot system. Looking ahead, there are several enhancements

planned:

 Voice Integration through smart speaker: To enhance accessibility and ease of use, we plan

on integrating in home voice-activated assistance that will allow tenants to interact with the

chatbot using voice commands, creating a seamless smart home experience. The in-home voice-

activated bot will be part of the same multichannel system, allowing users to receive consistent

customer service across all platforms.

 Fine-tuning the AI Model: As more data on customer interactions is gathered, there will be

opportunities to fine-tune the chatbot’s language models. This will further improve response

accuracy and relevance, enhancing the overall user experience by tailoring the responses more

closely to individual preferences and query types.

 Human Intervention in the Admin Dashboard: The Pause-AI feature will be activated on

the admin dashboard, enabling human agents to intervene when necessary. The goal is to allow

agents to pause AI-driven responses and take over conversations manually when complex or

sensitive issues arise, all in order to improve customer satisfaction.

`

Academic year 2023/2024 55

References

1. MongoDB. (n.d.). MongoDB Atlas Vector Search. Retrieved from MongoDB Platform:

https://www.mongodb.com/products/platform/atlas-vector-search

2. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Riedel, S. (2020). Retrieval-

Augmented Generation for Knowledge-Intensive NLP Tasks. Retrieved from:

https://arxiv.org/pdf/2005.11401

3. Amazon Web Services. (n.d.). What is Prompt Engineering?. Retrieved from AWS:

https://aws.amazon.com/what-is/prompt-engineering/

4. Hostaway. (n.d.). Hostaway Main Page : https://www.hostaway.com/

5. Hostaway. (n.d.). Hostaway API Documentation. Retrieved from:

https://api.hostaway.com/documentation

6. HostAI. (n.d.). Bot Communication Tool. Retrieved from: https://www.hostai.app/

7. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,…& Polosukhin, I.

(2017). Attention Is All You Need. Retrieved from: https://arxiv.org/pdf/1706.03762

8. OpenAI. (n.d.). OpenAI Assistant Overview. Retrieved from OpenAI Platform Documentation:

https://platform.openai.com/docs/assistants/overview

9. Meta for Developers. (n.d.). WhatsApp Webhooks. Retrieved from:

https://developers.facebook.com/docs/whatsapp/webhooks/

10. Meta for Developers. (n.d.). WhatsApp Cloud API Overview. Retrieved from:

https://developers.facebook.com/docs/whatsapp/cloud-api/overview/

11. Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(63).

https://link.springer.com/content/pdf/10.1007/s12525-023-00680-1.pdf

12. Hugging Face. (n.d.). LangGraph for Advanced RAG. Retrieved from Hugging Face Cookbook:

https://huggingface.co/learn/cookbook/en/advanced_rag

13. Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(63).

https://arxiv.org/pdf/2407.19994

14. LangChain. (n.d.). LangChain Documentation. Retrieved from:

https://python.langchain.com/v0.2/docs/introduction/

https://www.mongodb.com/products/platform/atlas-vector-search
https://arxiv.org/pdf/2005.11401
https://aws.amazon.com/what-is/prompt-engineering/
https://www.hostaway.com/
https://api.hostaway.com/documentation
https://www.hostai.app/
https://arxiv.org/pdf/1706.03762
https://platform.openai.com/docs/assistants/overview
https://developers.facebook.com/docs/whatsapp/webhooks/
https://developers.facebook.com/docs/whatsapp/cloud-api/overview/
https://link.springer.com/content/pdf/10.1007/s12525-023-00680-1.pdf
https://huggingface.co/learn/cookbook/en/advanced_rag
https://arxiv.org/pdf/2407.19994
https://python.langchain.com/v0.2/docs/introduction/

`

This project, conducted as part of an end-of-studies internship for a Master's degree in Artificial

Intelligence and Virtual Reality at the Faculty of Sciences - Ibn Tofail University, aims to develop a

customer service chatbot to enhance the tenant experience in smart home rentals. Hosted by SOJORI

Holding, the chatbot leverages advanced technologies such as FastAPI, OpenAI, and LangChain,

incorporating features like online check-in, property access, and communication through WhatsApp

and the company's website. By combining artificial intelligence and real-time data retrieval systems,

the project enhances efficiency, customer satisfaction, and service scalability.

Ce projet, réalisé dans le cadre d’un stage de fin d'études en Master Intelligence Artificielle et

Réalité Virtuelle à la Faculté des Sciences - Université Ibn Tofail, vise à développer un chatbot de

service client pour améliorer l'expérience des locataires dans le domaine de la location de maisons

intelligentes. Hébergé par SOJORI Holding, le chatbot utilise des technologies de pointe telles que

FastAPI, OpenAI, et LangChain, et intègre des fonctionnalités comme l'enregistrement en ligne, l'accès

aux propriétés et la communication via WhatsApp et le site web de l'entreprise. En combinant

l'intelligence artificielle et des systèmes de récupération de données en temps réel, le projet améliore

l'efficacité, la satisfaction des clients, et l'évolutivité du service.

